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ABSTRACT

Rigorous expressions for diffusion-controlled currents at a sta-

tionary finite disk electrode are derived through use of the Winer-Hofp

technique. The chronoamperometric curve obtained varies smoothly from a

curve represented by the Cottrell equation to a steady state value

similar to that obtained for a spherical electrode as time elapses. The

solution can be expressed also as the Cottrell term multiplied by a

power series in the parameter M17a, where a is the electrode radius.

The present work is discussed in terms of the coefficient of the first

term in this formulation.
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INTRODUCTION

Most studies of mass transfer in electrochemical problems have

focused on linear diffusion to and from a planar electrode or on diffusion

in the radial direction at a spherical or a cylindrical electrode. In

other words, diffusion is considered only in the direction perpendicular

to an electrode, though the electrodes employed in practice have their

own more complex geometries. Real electrode processes are frequently

complicated by diffusion with directional components other than normal

to the electrode, i.e., non-linear diffusion, especially near the edges

of the electrode. We can take as examples of complicated diffusion

shielding effects at the DME or the HMDE by the glass tip supporting the

mercury drop [1-3], edge effects at planar electrodes [4-15) and effects

of partially blocked electrodes [16-24]. These effects are strongly

dependent not only on geometries of electrodes but also on the relation

between dimensions of electrodes and the time scale of the experiment.

One of the simplest geometries of electrodes that complicates

diffusion is a planar disk electrode embedded flush in an infinite in-

sulating plane. Chronoamperometric curves at this electrode are ex-

pected to have the following behavior as time elapses: at sufficiently

short times they should obey the Cottrell equation (i 'i//t), be

gradually influenced by three dimensional diffusion near edges of the

electrode at longer times, and finally approach a steady state current,

as is observed at a spherical electrode [25]. One of the interesting

points of the stationary disk electrode is that the steady state current

can be observed at long times though the electrode is stationary as well

as planar. Another interesting point is that planar disk electrodes can
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be constructed easily to conform closely to a given model. This is in

contrast to hanging mercury drop electrodes or shielded planar elec-

trodes. The other fascinating point is that for proper dimensions and

times such electrodes make it possible to determine n and D simultaneous-

ly from a single chronoamperogram [9,10,28,29].

Both theoretical and experimental work has been carried out on mass

transport at the stationary disk electrode. Bard [4] concluded from

potentiometric measurements that a planar disk electrode has a transi-

tion time which is similar to that obtained at a spherical electrode

when the time scale is long enough. Lingane [5] gave a quantitative

experimental description of the chronopotentiometric and chronoampero-

metric constants at unshielded planar disk electrodes. Soos and Lingane

(6] derived an analytical expression for diffusion-limited currents at a

planar disk electrode. However, their equation is just the sum of the

Cottrell equation and the expression for the steady state current, so

that it does not describe actual chronoamperometric curves. Flanagan

and Marcoux [7] evaluated departure of chronoamperometric curves from

the Cottrell term by means of digital simulation. Ito et al. [8] in-

troduced an empirical parameter into an expression for the diffusion

current as a result of chronoamperometric experiments at platinum

microelectrodes. Kakihana et al. [9,10] did potentiostatic experiments

at unshielded small disk electrodes in order to obtain more accurate

values of diffusion coefficients of electroactive species. They also

employed digital simulation using a corrected version of the scheme of

Flanagan and Marcoux [7] and compared their simulated values with their

experimental ones. Recently Sarangapani and DeLevie [11] challenged

theoretically the problem of ac response at this kind of electrode;



-4-

their expression does not satisfy the boundary condition given. Dayton

et al. [12) measured almost time independent diffusion current at small

sizes of carbon fiber electrodes.

Most recently Oldham has analyzed theoretically the problem of current

distribution for an infinitesimally thick electrode bounded in only one of

the remaining four directions [14]. The solution can be applied through

appropriate transformation to finite disk electrodes of moderate size. In

addition, Heinze has developed a digital simulation model for current at

a planar disk electrode [15].

Theoretical studies of complicated diffusion have been done on

assumptions that potential theory valid only for the steady state may be

applicable to time dependent systems [17-21], and non-linear parts of

diffusion may be represented as mean concentrations [22-24]. Neither

technique is a direct approach to non-linear diffusion. In the field of

heat transfer, which is similar to the electrochemical problem from the

phenomenological point of view, a rigorous solution has been given to

systems with intricate geometrical boundaries [26] by employing the

Wiener-Hopf method [27]. This technique is not only powerful but also

applicable to many electrochemical problems concerning complicated

diffusion with various kinds of geometries of electrodes.

The purpose of this paper is to derive rigorous expressions for

diffusion-controlled currents at the unshielded planar disk electrode in

quiescent solution.

DERIVATION

Let us consider a simple, reversible electrode reaction, 0 + ne

R, Involving only species soluble in the solution. We assume that

diffusion coefficients of both species have the common value, D, and



that migration can be neglected. Under these conditions, the expres-

sions for diffusion-controlled currents at the planar disk electrode are

derived for large values of t and for small values of t.

Large Values of t (Descending Series). The diffusion equation

represented in polar coordinates is of the form

'C = D {Ir - (r2 1 (j = 0 or R) ()

r r sine

where C. = C. (r, e, t) is the concentration of species j, r is the dis-

tance from the center of the electrode and e is the angle which the

radius vector makes with the z-axis as shown in Fig. 1.

The initial conditions are given by

Co(r , 0) = CO , CR(r, e, 0) = 0 (2)

where C0 is the bulk concentration of species 0. Taking into account

that the Nernst equation holds at the electrode, we have the boundary

condition for e = v/2

Co(r, 1/2, t) = CR(r, r/2, t) for 0 < r 5 a (3)

where { = exp[(nF/RT)(E - EO)] and a is the radius of the electrode.

Since the sum of the fluxes for the two species at the electrode is

equal to zero, it follows that

aCo(r, n/2, t)/ae + BCR(r, w/2, t)/ae = 0 for 0 5 r g a (4)

The boundary conditions at the insulating plane are given by

aC (r, ?/2, t)/ae =0 for r >a (j =0 or R) (5)

If /- (C0 - C0  CR) is replaced by v and the Laplace transforma-

tion is carried out with respect to t, eqns. (1), (2), (3) and (5) are

reduced to

2(r s/D + 1/4) * ra (rai/ar)/3r + (1/sine)3(sin83e/ava (6)
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K S
(7)

ai(r, n/2)/a0 =O0for r >a

where means the Laplace tran~sform of v. If we apply the Kontorovich-

Lebedev transformation [30] given by

=f -V(r,e)K j(r,,i7-) (1/ r) dr (8)

to eqn. (6), taking into account ~ ~0 (/T--) as r - 0, we have

2 _1/4)A + (1/sine)(a(sinea /ae)/De) = 0()

Although eqn. (9) holds only for IRe iii < 1/2, analytical continuation

[31] makes it valid for any values of p~. The solution of eqn. (9) is

Oje)= B 1 P -0-1/2( cos6) + B 2 Q 11 2(cose)

where P and Q are the first and the second kind Legendre functions [32),

respectively, and Band 82 are any constants independent of e. Since

0 should be continuous at e = 0, 8 2 is found to be zero. Eliminating 8 1

in terms of the combination of o and ato/a6 and letting 0 be 7r/2 yields

+ 112 11 (0)(i~T/2) = 0 (10)

where the prime means the derivative with respect to e.

By considering eqns. (7) and (8), an alternative expression for

eqn. (10) is written as
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a €

-(CO/s) f K (rs7) (I/-r)dr + f v(rr/2) K (rf'i7U)(1/r)dr
0 

' a

a
= L(p) f v (rr/2) K (r-7U)(I/r)dr (11)

0

with

L(w) = -P i/2(O)/P'o/2(O) =

r(1/4 + p/2)r(1/4 - p12)/{2r(3/4 + p/2)r(3/4 - u/2)) (12)

Now, a new function is defined as

a

= r(l + )J p f v'(r,7/2) IP (rv'-s7) (1/r)dr (13)0

where = (a/2) v'-7 and I is the modified Bessel function of the

first kind. T(;) is found to be regular in the region Re v > -1/2,

because I (z) becomes (z/2)"/r(l+p) [32) as p approaches infinity, and

v" has the order of vr' as r approaches zero. On making use of eqn. (A-

2) in Appendix 1, the integral on the right hand side of eqn. (11) can

be expressed in terms of € as

ad
f ( (r, K (/ r) 2)r)() + (1/2)UlT(-u) 4)(p) (14)

0

L(v) defined by eqn. (12) can be decomposed into the product of two

functions:

L(u) Lp(u)/L (15)

p Nj



where

Lpj)= r(1/4 + i/2)/2r(3I4 + ji/2)

L N(Vi) = r(3/4 - p/2)/r(1/4 - w/2)

LPM~i and L,,(P) are analytic and non-zero in the regions Re vi > -1/2 and

Re V < 1/2, respectively. Substituting eqns. (14) and (15) into eqn.

(11) and multiplying both sides by LN(il)/&"(-.J) yields

V + X =W + (1/2) LP(M QMt~ (16)

v(p) =(LN( )/F(-) f (C/s)K (rv/_7f)(lvi) dr (17)
0

X(p) =(LN )/(-) I (r,m/2) Y, (rv-sTD)(l/r)dr (18)
a

W( j) LPM)=( )2 2P Nr-1) (19)

Since two unknowns, (r,7/2) and -V(r,r/2) are involved in eqn.

(16), explicit solutions cannot be obtained in an ordinary algebraic

manner. However, the Wiener-Hopf technique [27) sometimes enables us to

divide one equation into two independent ones leading to solutions. If

we apply Cauchy's integral theorem [31] to V(Pi) for -1/2 < Re vi < 0 and

take the imaginary part of the path of integration to infinity, we have

V(P V P(P) + VN(1p) (20)

=pw -(1/20r) f V(z)(z-1j) 1dz
8- i~o (21)

VN(1i) =(1/2rr) fI ~ )z-)d
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where -1/2 < < Re u < a' < 0. Inserting the ascending series of K

[33] into the integrand of eqn. (17) and integrating term by term re-

sults in

a 00
1 K, (rf-s-D)(l/vi)dr = (T, vi/2sinwTT) I (I/n!)-

n=O

E.2n- /(n- +l)(2n-v+l/2) - 2n+ /r(n+w+l1)(2n+p+l/2)} (22)

which is convergent for IRe pi < 1/2. On extending the range of vi to

all the complex values by analytic continuation, substituting eqns. (22)

and (17) into eqn. (21) and shifting the path of integration to the

left, simple poles occur at z = -2n -1/2 (n = 0, 1, 2, ...) with resi-

(1n 2ndues (-l) / {(2n + ii + 1/2) r(2n + 1/2)}. There are no poles at z =

j, (j = 1,2,...) because of the relation

S(1/n!) { 2n+j/F(n+j+l)(2n+j+1/2) -E 2n-j/r(n-j+l)(2n-j+I/2)}
n=O j=l

:0 (23)

Hence VP becomes

Vp = -(CO r/2s) . (_l) n /2nr (2n+l/2)(2n+i+l/2) (24)
n=O

The function W can be expressed as a sum of Wp and WN in a similar

way. If eqn. (19) is substituted into eqn. (21) with W and Wp replacing

V and VP, respectively, and the path of integration is shifted to the

left, simple poles arise from r(1/4 + z/2) at z = -2n-1/2 (n = 0,1,2,...)

with residues (_l)n/n! and from r(z) at z = -j (j = 1,2,...) with resi-

dues (-1)j/j!. Consequently



Wp= - (n+1/2) 4(2n+1/2)E 4n+/4n!r(2n+l/2)r(2n+3/2)(2n+ +l/2)
n=O

+ E r(j/2+1/4) 4(j)E 2 i/4(j-l)'jlr(j/2+3/4)(j+l) (25)

j=l

Although the integral part of eqn. (18) is analytic for all values

of -W, X is analytic in the restricted region Re p < 1/2, owing to Lp(l)/

Combining eqn. (20) and W =W + WN with eqn. (16) yields

VN + X -WN -VP + Wp + Lp 12 = G(v)

where we have represented both sides as G(vi). Since the left hand side

and the middle are analytic at least in the regions Re v < 0 and Re p

> -1/2, G(ij) is analytic in the strip -1/2 < Re ji < 0. However we

can let G be analytic over the entire region of v by analytic continua-

tion. Since 0(1/p), Lp = 0(I/v), Vp = O(l/) and W = 0(1/p) as v

approaches infinity, G becomes zero as o approaches infinity. If

Liouville's theorem [31] is applied to two kinds of features for G, G is

found to be identically zero. Hence

4(p) = 2(Vp-Wp)/Lp (26)IP
Inserting eqns. (24) and (25) into eqn. (26), we can readily express 4 as

I'M = -(cO a-/v SLp) Z an(,),n  (27)
n=O

The functions an are functions of P and can be successively determined

to give

JI.



ap)= 2/(2ij+l)

a(I)= 4/i(2pj+1

a ()= -8/3(21,+5) + 8/n 2 2+l) 2/ 3(vi+l

a() 16( 1 Ti2 _ 2/9)/r(2j+l) 4/37r(~i+l

The total current, noting eqn. (4), is given by

[T /nF] f 27D(Z,(r,rt/2)/D@)dr
0

a
-((2TrD)/(l+ )) f V(r,ir/2)(l/vrr)dr (28)

0

It is shown in Appendix I that the inverse transform of eqn. (13) is

given by

j o

v,(r/)= (1/7ni) f -jooi)) (r V'§7) d j (29)

If we substitute eqn. (29) into eqn. (28), exchange the order of in-

tegration and carry out integration with respect to r, noting eqn. (22),

we have

2 t

[T/nF] = -(r, Dv'a/1i(l+;)) f (4(a)/r(mosinptr).

n =0

Completing the path of integration in the right half plane and using

eqn. (23), simple poles appear at pi - 2n+1/2. When the residues are

calculated and eqn. (27) is substituted into the resulting equation, it

follows that
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[k/2] n1

[T-nF] = (45 C0Da/s(l+)) z k (I ak_2n(2n+I/2)/r(2n+1/2 )
k=O n=O

where [k/2] means the integer part of k/2. The inverse Laplace trans-

form is given by

I = (4nFC Da/(l+;))[l + 2/rT3/2 /. +

c k k+nII+ (-Ik~ r(k+I/2) a2k.2n+l (2n+I/2)T- k-1/2 /r(2n+1/2)]

k=l n=O

=(4nFCODa/(l+c)) [1 + 0.35917 1/2 + 0.24648 T 3/2

+ 0.20648 -5/2 +...] (30)

where T = 4Dt/a 2 .

Small Values of t (Asymptotic Expansion). The diffusion equations

in circular cylindrical coordinates are given by

aC./at = D {(I/r)a(raC./,r)/Dr + a2C./az 2} (j = 0 or R)(31)

The initial and boundary conditions are the same as eqns. (2), (3), (4)

and (5) if 6 is altered to z and z is set to be zero. On making a

change of variable, v = /F (CO - CO - CR), and performing Laplace trans-

formation, eqn. (31) becomes

sv/D = + 2-/z 2

Applying the Hanckel transformation of order zero (31), given by

U(p,z) = f i(r,z) VpF Jo(rp)dr (32)
0

to the above equation yields
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d U/dz2  (P + s/D)U

where the relation, v= O(Y/i) as r -~ 0, has been used. The solution of

the differential equation is obviously given by A~exp[l,/p'-s/D z].

Wlhen we eliminate a constant, A, from U(p,0) and dU(p,O)/dz, we have

Vp+ s/D U(p,O) + dU(p,O)/dz = 0

If we rewrite this in the integral form with the aid of eqn. (32) as

well as the boundary conditions and make use of the following expression

[35]

a

fr J0(rp)dr = (alp) Jl(ap) (33)

then we obtain

-c0 a J, (ap)/s,,rp + f V(r,0) ,Ir- J0(rp)dr
a

a
+ M 1 0v I(r,0) .7- Jo(rp)dr = 0 (34)

where M = M(p) = lb / p 2+ s/D and v(r,0) = aV (r,o)/az.

We introduce three new functions:

U+(p) = (1/2) fo { (r,0) vrrip H0'M (rp)/Hl~')(ap) /aip1dr (35)
a

U_(p) = (1/2) f Cv(r,O)A7r-p H0 (2) (rp)/H1 (2) (a p) Aip) dr (36)
a

a
U 01(p) = f (r,0) ArFp Jo(rp)dr (37)

0

whr H lH~ ) 2 and H 1 ()are Bessel functions of the third

kind (36]. Inserting the asymptotic expansions of Bessel functions of
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the third kind into eqns. (35) and (36) and letting r be r~a leads to

U+(p) -,, + (i/2) f v-(r+a,o) e-ipr dr (38)
0

for large values of Re p.

It is well known that the concentration profile can be represented

by the profile at a spherical electrode as r becomes large. Thus,

V(r,0) has the order of r 3/2exp(-vi7U/ (r-a)) (25]. If we substitute

this into eqn. (38), we find U+(p) is analytic in Im p > - Re XM7

and U_(p) is analytic in Im p < Re v7Uf according to the theory of

Laplace transformation. Expressing eqn. (34) by eqns. (35), (36) and

(37) through use of the relation 2JV = H (1) + H~() dividing the
V

resulting equation by H1 (1)(ap) ,a-pe7'4 ( /~~ 12 and rear-

ranging it, we have

U+/M+ + U6m-/Hi (ap) Aap+ R + S0 (39)

where

M+ M+(p) =e~i/
4 (p12

M_ =M(p) =eT7i/
4 (p-i VS7W 1/2

0
R = .-C vra/2sptl+ (40)

S = (U_ - C 0 r/2sp)H1 (2)(ap)/M +Hl~I/(ap) (41)

Mand M are analytic in the regions Im p> -Re vrs7D and Im p < Re

v7,respectively, and their product equals M.

For applying the Wiener-Hopf technique, R is expressed, according
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to Cauchy's integral theorem [31] as

R R+ + R_ (42)

R+ = (1/27i) f_. +,i (R(z)/(z-p))dz

00+ 'i

R = -(I/2ri) f (R(z)/(z-p))dz (43)

where -Re v'7U < < Im p< " < 0. By closing the path of the integral

in eqn. (43) to the upper half plane and calculating the residue at z

0, R_ becomes

R = -(COva/2sp) (s/D)
l/4

Hence

R+ = R- R_ = (C0 va/2sp) {(s/D)1/4 - l/M+} (44)

S can be separated into two parts,

S =S+ + S (45)

S+ = (1/27i) f {U (Z) - CO a/2sz} [H1(2)(az)/H1(1)(az)M+(z)(z-p)]dz

-00+Bi "

(46)

where S_ corresponds to eqn. (43). Since H (2)(z)/H(1 )(z) , -ie

the singular point of the integrand in eqn. (46) is restricted only to

z = -i A7f coming from M+ in the lower half plane. The singularities

in the bracket of eqn. (46) are located at z = i /r7/ and z = 0, both

of which are pretty far from z = -i XS7[ for large values of IsI.

Therefore it is possible to let z be -i AsD only in the bracket of
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eqn. (46) when the path of integration is shifted to the lower half

plane. Changing the variable z = -i v's7D + iw, carrying out integration

and employing the relation,

U_(e-T 1P) = -U+(p) (47)

we have the following leading term:

'1(+(vs7)- C OV'572is 3/2 }e-2a ih,5/2 ,~ 3/2 (iA/7 + p) (48)

On combining eqn. (39) with eqns. (42) and (45),

+ + + U +/M+ = _U6 M_/H 1(
1 )(ap),v'a- - R_ - S_ (49)

Rand S+ as well as U+/M+ are a nalytic in the region of Im p >-Re

/Vi/D, while each term on the right hand side is analytic in Im P < 0

because

U6/H 1 (1)(ap),ra- ,~ (1/2) fa (ei(r-a)p _ e-i(r+a)p) i'r,O)dr
0

Since all the terms on the left hand side of eqn. (49) tend to zero as p

i~o, it follows, according to Liouville's theorem [31),

U+(p) =-M+(p) {R+(p) + S+(p)1 (50)

Substituting eqns. (44) and (48) into eqn. (50) and letting p be yrs7D,

we can see that tJ+(iv'7U) has the order of l/(sp). Therefore, S+ has

the order of (1/s) exp [-vs], which can be negligible for large values

of IsI. Then, eqn. (50) becomes asymptotically
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From the combination of eqn. (47) and (51), U_ is given by

U.(p) ' (C 0 Ta/2sp) {l - M.(p)(s/D)1 /4}

If U+ and U are eliminated from eqn. (39) with eqns. (40) and (41),

U"0 takes the form

U'(p) . (C a/2sv')(s/D)1 /4 {H (1)(ap)/M _ + H1(
2
)(ap)/M + }  (52)

The flux for the total current is given, in the Laplace transform,

by

a
[I-/nF] = f 2'TrD (_o(r,O)/az)dr

0

a
- (27D/(l+ )) f rA v'(r,O)dr

0

Substituting the Hanckel transform of U'(p,O), given by

v'(r,O) = f U'(p,O) vrp- J0(rp)dp
0

into the above equation, changing the order of integration and integrat-

ing with respect to r by use of eqn. (33), we have

CL/nF] = (27rDa/(l+c)) f (J,(ap)U'(p,O)/vr)dp

0

U'(p,O) is equal to Uo(p) since v'(r,O)= 0 for r > a due to the boundary

condition on the insulated wall.

Hence, replacing U by V 0 (given by eqn. (52)) leads to

w her (eCODa2T/(1+C)s)(s/D)

where
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T = f {H1(1)(ap)/1" + Hl(2)(ap)/M+} (J1(ap)/p)dp (53)
0

The integral in eqn. (53) is evaluated in Appendix 2 to give

T = (s/D)I/ 4{l+(1/v7) Y F (2n-3/2)r(n+1/2) 2 '2 n/r(3/2-n)r(5/2-n)r(2n)2 }

n=l

The inverse transform for the total current is

I " (4nFCODa/(l+)) {v'/2vT-

OD2n-1 2
+ (rii/2) z r(2n-3/2)r(n+l/2) T /r(n)r(2n) r(3/2-n)r(5/2-n)}

n=l

= (4nFC Da/(+)){vT/2,7 + Tr/4 - 3'TT/2 1 0 
- 315Trr 2/221 ... } (54)

DISCUSSION

The first term in eqn. (30) represents the solution for the steady

state, derived from potential theory [37,38], while the leading term in

eqn. (54) corresponds to the well-known Cottrell equation. They express

satisfactorily the two kinds of limiting behaviors of i-t curves which

are intuitively expected.

The function, f, given by

0I = {4nFC Da/(l. )} f(T) (55)

is calculated numerically from eqns. (30) and (54), and the values are

plotted against i in Fig. 2. The curve computed from eqn. (30) meets

the curve evaluated from eqn. (54) in the domain 1.4 < T < 3.2. This

fact indicates that eqns. (30) and (54) suffice to describe chronoampero-

metric curves of real systems with good accuracy.

The contribution of the edge effect is revealed in the second and

the subsequent terms of eqn. (54). The ratios of the edge contribution
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terms to currents due to the Cottrell term are less than 5%, 10% and 30%

for the values of Dt/a2 less than 8 x l0 4 , 3.2 x 10"3 and 2.9 x 10" ,

respectively. On the other hand, if values of Dt/a are larger than

53, 3.5 and 0.65, the discrepancies from the steady state are within 5%,

10% and 30% of the steady state current, respectively.

Some studies on diffusion-controlled currents at a stationary disk

electrode have been directed toward evaluation of the term succeeding

the Cottrell term. According to Soos and Lingane (6], the current ex-

pression can be expanded in the form

I 7 a 2nFC 0V/t{l + al71/-/a + ... } (56)

where the coefficient a1 is a constant to be determined. Some values of

a1 reported so far are listed in Table 1 together with the value calcu-

lated from eqn. (54). The latter value is very close to the simulated

and experimental values which were obtained in many iterated runs by

Kakihana et al. [9,10] and experimental values by Ito et al. [8].

Dimensionless i-t curves obtained analytically by Soos and Lingane

[6) and computed with digital simulation by Kakihana et al. [9,)0] are

shown in Fig. 2. Since the expression by Soos and Lingane is just the

sum of the Cottrell term and the steady state term, it does not ob-

viously describe the real i-t curve. The simulated curve, C, is over-

lapped on curve A for small values of t while it deviates from curve A

as time elapses. This is a natural result if it is noted that digital

simulation frequently involves errors for a number of iterations of

computation corresponding to long electrolysis time. Most experimental



-20-

chronoamperometric curves have been measured in the range T < 0.3 19],

in which they are in agreement with both simulated and our analytical

curves within 3% error.

The clever analytical solution of Oldham [14] is stated to be

accurate for T < 0.16. In fact it overestimates the value of f(T) by

only 0.7% for T = 0.16. The approximation remains reasonably accurate

for larger values of T. For example, for T = 1, where the solution of

Soos and Lingane overestimates f(T) by 24%, the corresponding error in

Oldham's solution is only 2.8%.

Sarangapani and DeLevie derived an analytical expression for the ac

response at a finite disk electrode [11]. However, eqn. (15) in their

paper does not satisfy the boundary condition at r - -. If we carry out

the integration of their eqn. (19) in a fashion similar to that given in

Appendix 2 and take the frequency to be zero, the result should be

identical with eqn. (30) or (54). However, the two leading terms pro-

vide I \, -2.67 nFC0Da for the steady current and I ", -nFC0a2VD ( t)
" /2

for small values of t as a result of integrating and performing inverse

Laplace transformation of their exprt.sion. Neither of these results

are reasonable.
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Table 1. Magnitude of the edge effect given by the coefficient of the

first correction term to the Cottrell equation. The coefficient,

a1, is defined by eqn. (56).

Authors Values of a, Methods References

Lingane 2.12 + 0.11 experimental 5

Soos and 4 2.257.... analytical

Lingane

Flanagan and 1.92 (published) 7

Marcoux 1.79 (corrected) simulated 9,10

Kakihana et al. 1.74 " 2.14 experimental

1.77 ' 1.98 simulated

2.16 + 0.35
Dayton et al. (at carbon paste) experimental

12
3.21 + 0.27
(at carbon fiber)

Ito, Asakura 1.77 experimental 8
and Nobe

Heinze 1.80-2.20 simulated 15

This work r- 1.772... analytical

.1!
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APPENDIX 1

This appendix shows that the inverse form of the transformation de-

fined by eqn. (13) is given by eqn. (29). Let us prove that the right

hand side of eqn. (29) in which 4 is replaced by eqn. (13), i.e.,V (i-I (1n) f ~( i (qt)/t)dt K Ij(qr)dpi = J(A1

is equal to v', where q = Yrs71. Substituting the relation [33]

K. (z) =(-/2sinv-) {1_ (Z) - I, Wz) (A-2)

into eqn. (A-1) yields

i- a
J = (1/-i) .~ f (-ji7'/2tsinj) {I (qt)I_ (qr)-I (qt)I ]i(qr)}.

If i; is replaced by -jj in the first term of the bracket and eqn. (A-2)

is employed for I- (qt) - I P(qt), eqn. (A-3) becomes
I-

J = (1/wi) f -iiT(pi) I 1 (qr)dp (A-4)

where

a _

T(p) = f (v(r, Tr/2) K Ij(qr)/r)dr (A-5)

Since Vi vanishes for r > a, it is possible to extend the upper limit of

the integral to infinity. Then T becomes the Kontorovich-Lebedev trans-

fcrr. (see Eqn. 8) of -V(r, wr/2). Eqn. (A-4) can be separated into the

integrals from -ic- to 0 and from 0 to i-. Changing variables vi = ix in

the former integral and p = -ix in the latter gives
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j = (i/iij f 0x T(ix) UI i(qx) - ix (qx)}dx

If eqn. (A-2) is inserted into the above equation, J is given by

=(2/7 f0 sinh(rx) T(ix)K.x (qx)dx

This is the inverse Kontorovich-Lebedev transform [30] for eqn. (A-5).

Therefore, J is equal to V(r, r1/2).
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APPENDIX 2

In this appendix, the integral value expressed by eqn. (53) is

evaluated. We introduce a function,

A = f{H I)(ap)/N_(p) + H' 2)(ap)/N+(P) (Jl(ap)/p)dp
0

where N+(p) = e i/4 (p + i V-s71) q , N_(p) = e"7i/4 (p-iv-STU)q and v is any

real constant. It is evident that A tends to eqn. (53) if v and q

approach 1 and -1/2, respectively. Expressing the Bessel functions of

the third kind in A as a combination of Bessel functions of the first

kind yields [36]

A = (l/isinv7) f {[JV(ap) - e-v 1 J V(ap)]/N_(p)

-[J. (ap) - e" i J (ap)]/N+(P)} (Jl(ap)/p)dp (A-6)

The integral representation of a product of Bessel functions is given by

[39]
c+i=

Jl(z)Jv(z) = (1/21Ti) f {r(-x)r(2x+v+2)(z/2)2x+V+l/r(x+v+l)c-i-

r(x+v+2)r(x+2)}dx (A-7)

where -v/2 - I < c < 0.

Replacing the products of the Bessel functions in eqn. (A-6) by

eqn. (A-7) and changing the order of integrals, we obtain

c' io

A -(I/ 2 sinvT) f ((f2-e'Vrlfl) $ (p2 X'/N.(p))dp

-(f2-eVifl) f (p2XV/N+(p))dp}(a/2) xV+ldx (A-8)
0
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where

f f,(x,v) z r(-x+v) r(2x-v+2)/r(x+l)r(x+2)r(x-v+2)

= f(xv) r-x)r(2x-v+2)/r(x-v+l)F(x-v+2)r(x+2)

We have set x to be x-v in the integral representation for Jv 1 in which

the integrand is f V Therefore the path of the integral for f 2 is

located in the left half plane while that for f 1 is to the left of x=

1. If we carry out the integration in eqn. (A-B) with respect to p, we

have (40]

f O(p 2xv /N+(p))dp = e-+(x-v/2-q/2+1/4)7i (s/D)x-v/2 -/2+1/2.
0-

r(2x--v+l )r(-2x+v+q-1 )/r(q) (A-9)

Since these integrals are convergent for q > 0 and for 0 < Re x <Re

(q/2), q is temporarily kept positive until integration is carried out

with respect to x. After that, q will be extended to all real values by

analytic continuation and then be set equal to -1/2.

Substituting eqn. (A-9) into eqn. (A-8) and rearranging it yields

A z (2(s/D )-/2 /21iir(q)si nvwrfcjo (a 2s/4D)x-v/2+1/2 .
c'-icc

r(2x-v+l )r(-2x+v)+q-1)'{f 2sin(-x+v/2+q/2-l/4)r

-fsin (-x-v/2+q/2-l/4)wldx

When we take the limit as v -~ 1 by use of L'Hospltal's theorem, we have

-q/2 .02 c'+ I
H.m A -(2(s/D) /22 2 r(q)) f (F 2(x)+Fl(x))dx (A-10)
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FI(x) = h1(x)f1 (x,l) {h2 (x)+'(l-x)-(r/2)cot(-x+q/2+I/4)r)

F2 (x) = h1(x)f2 (xl) {h2 (x)+4(x)+(Tr/2)cot(-x+q/2+l/4)r}

h1(x) = (a
2s/4D)Xr(2x)r(-2x+q)sin(-x+q/2+/4)7

hx = -(I/2)kn(a 24D) - g(2x) + (q-2x) - 0(2x+l) + i(x+l)

h2(x)=-(/)nas4)-p()

where 'Ax) is the Psi or Digamma function [41]. As described before,

the path of integration in eqn. (A-10) is on the left of c' = I for F1

and of c' = 0 for F2. Since poles do not arise from r(q-2x) or

ip(q-2x) under the conditions of eqn. (A-9), poles resulting from closing

the contour to the left half plane are the simple poles at x = 0 coming

from three terms involved in the parenthesis of F2 and double poles at x

= 1/2 -n (n = 1,2,3,...) coming from r(2x)iP(2x+l). One should take

notice that there is no pole at x = -n (n = 1,2,3,...).

Each contribution of simple poles at x = 0 can be calculated in the

familiar method to give -(l/2)(s/D)1/4 , (s/D)1/4 and (l/2)(s/D)l/4 in

turn, after taking the limit q - -1/2. If we let the residue of eqn.

(A-10) at x = 0 be A0 , we obtain

A0 = (s/D)1/4

In order to calculate the residue at x = 1/2-n, which is symbolized by

An, we should evaluate a[{F 2 (x)+Fl(x)}(2x+2n-l)2)/ax at x " 1/2-n. If

the following relations:

(1/2-n) 0 (1/2+n)

and

[a(i(x) - q(1-x) + wcot(-x+q/2+I/4)r)/ax] / 2 2 (q * -1/2)
x-1/2-n
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are used for the calculation of the residue, A. can readily be obtained

A. (1/rg5)(s/D) 14 (a's/4D) 111-n r(2n-3/2)r(n+1/2) 2/r(3/2-n).

r(5/2-n)r(2n)2

The sumi of A n provides

T =lim A =(s/D) 1/4{1l+01R) E (a2 s/4D)1/2-n r(2n-3/2).

r(n+1/2) 2/r(3/2-n)r(5/2-n)r(2n) 2
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FIGURE CAPTIONS

Fig. I. Spherical and cylindrical coordinates located on the stationary

micro disk electrode. Dashed vector for the cylindrical coor-

dinate; solid vector for the spherical coordinate.

Fig. 2. Dimensionless chronoamperometric curves.

A: calculated from eqn. (54), B: calculated from eqn. (30),

C: computed by means of digital simulation [9,10], D: curve by

Soos and Lingane [6]. The ordinate is the function f(T) given

by eqn. (55).
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